ST. Louis UNIVERSITY . PurNaM PRACTICE
AL 2003 Solutions: Putnam LXIII Pror. G Maks

Problems Al through A6 were given during the 3-hour morning session of the Putnam Exam of December 7, 2002; problems
B1 through B6 were given during the 3-hour afternoon session of this exam.

P, . :
Al. Let k be a fized positive integer. The nth deriwative of — has the form - (f)l_H where P, (x) is a polynomial.
xk — _
Find P,(1).
Solution. We have
P,(1) = (-1)"nl k" (1)

for each integer n > 0. We prove this by induction on n. Since Py(z) = 1, Equation (1) holds when n = 0. Now pick any
integer m > 0 and assume that Equation (1) holds when n = m. Since

(xk _ 1)m+2 (xk _ 1)m+27

gm+1 < 1 > i( Pz ) _ (2% — 1) P}, (z) — k(m 4 1) Py (x) 2 _ Puj(z)
(z

dem i\ 2k — 1)~ dz L D
we infer that
Pryi(1) = (F=1)PL (1) —k(m+1)P,()1F = —k(m+1)Py(1)
= —k(m+1(-1)"m!E™ (by inductive hypothesis)
=~ 1R
which shows that Equation (1) holds when n = m + 1. This completes the induction, and the proof.

A2. Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.

Solution. Call the five points Pq, ..., P5. Choose a great circle C passing through P4 and P5. This great circle divides the
sphere into two closed hemispheres H; and Hs with the property that H; N Ho = C and H; U Hy is the whole sphere. By
the pigeonhole principle, H; or Hs must contain two of the three points P, Ps, P35, and thus contains four of the original
five points.

A3. Letn > 2 be an integer and T, be the number of non-empty subsets S of {1,2,3,...,n} with the property that the
average of the elements of S is an integer. Prove that T,, —n is always even.

Solution. Define

Qn:{5§{1,2,3,...7n} 2ues® £y |S|>1}.

ZaESl

Then T,, — n = |2,|. Let ¢ be the bijection from the power set of {1,2,3,...,n} to the power set of {1,2,3,...,n} defined
by ¢(0) =0 and

w({kl,kg,...,km}):{n—l—l—km,n—l—l—km,l,...,n—l—l—kl} (Wher61§k1<k2<~-~<km§n).

Clearly ¢(£2,,) = Q,,. Since ¢(¢(S)) = S for all S € Q,,, in order to show that |[Q,,] is even it suffices to show that there are
an even number of S € Q,, with the property that ¢(S) = S (let us say such subsets S are p-invariant). The average of the
elements of a p-invariant subset is (n + 1)/2. So if n is even, ), contains no g-invariant members.

Now assume n is odd. We have a bijection

{SeQn

1
S is p-invariant and % ¢ S} — {S €,

1
S is p-invariant and % es }



given by S +— SU{(n+ 1)/2}. Thus, there are an even number of p-invariant members of €, if n is odd.
We have shown that (regardless of the parity of n) €2, contains an even number of ¢-invariant members, and therefore
T, — n is even.

A4. In Determinant Tic-Tac-Toe, Player 1 enters a 1 in an empty 3 x 3 matrix. Player 0 counters with a 0 in a vacant
position, and play continues in turn until the 3 X 3 matriz is completed with five 1’s and four 0’s. Player 0 wins if the
determinant is 0 and Player 1 wins otherwise. Assuming both players pursue optimal strategies, who will win and how?

Solution. Player 0 has a winning strategy. Since row and column exchanges do not alter whether the determinant is 0, by
performing such exchanges we can assume without loss of generality that Player 1’s first move is in the center position, a 1
in the (2, 2)-entry of the matrix. Now Player 0 puts a 0 in the (1, 1)-entry of the matrix. Taking transposes does not change
determinants, so we can assume without loss of generality that Player 1’s second move is a 1 in either the (3, 3)-entry, the
(2,3)-entry, the (1, 3)-entry, or the (1,2)-entry. In each case, Player 0 has a winning sequence of moves, as follows (each of
Player 1’s moves is forced, since a row or column of 0’s automatically wins for Player 0):

0 0 0 010 0/0]|1 0]0]1
I 1 ~ 1 ~ 111 ~ 111 ~ 111 ~ 111 = Player 0 wins.
1 0 1 0 1 0 1 0 1 0]0]1
0 0 0 0(1/0 0(1]0 0(1]0 0O(1(|0
(IT) 111 ~ 11 ~ 111 ~ 111 ~ 1]1{1 ~ 1|1|1 = Player 0 wins.
0 0 0 0
0 1 0 1
(II1) 1 ~ 1 = Player 0 wins as in (I).
0
0 01
(IV) 1 ~ 1 = Player 0 wins as in (II).
0

A5. Define a sequence by ag = 1, together with the rules asp4+1 = an and agn+2 = apn + apy1 for each integer n = 0. Prove
that every positive rational number appears in the set

ant o\ _f11213
o T\ 2TU3Y

Solution. Let S denote the set described in the problem, i.e.

S_{anleQ

an

nEN}.

We will prove that S contains every positive rational number. Suppose this is not the case. Then we can choose p,q € N
with p/q ¢ S and p + ¢ minimal. Since 1 is visibly in S, we know that p # g. Thus, either ¢ > p or ¢ < p.

Case 1. ¢ > p. Since p+ (¢ — p) < p + ¢q, we know that p/(q — p) € S; say, p/(¢ — p) = an/an+1 for some n. But

_— = — = = = 87
q—p Ap+1 (079 + Ap+1 a2n+42

D QA p Qn a2n+1
q

a contradiction.

pP—q  Gn

Ap + Apt+1 G2p42
n n _ n 687

=

Case 2. ¢ < p. Since (p— q) + g < p+ ¢, we know that (p — q)/q € S; say, (p — q)/q = an/an+1 for some n. But
p
q

q Ap+1 Ap41 a2n+3

[\]



a contradiction.

A6. Fiz an integer b > 2. Let f(1) =1, f(2) =2, and for each n > 3, define f(n) = n f(d), where d is the number of base-b
digits of n. For which values of b does

converge?

Solution. Just b = 2. To see this, first assume b > 3 and suppose for a contradiction that > 7, 1/f(n) converges. Then

d d
Ss(E ) (o
n=1 £ d=1 \,,_pd—1 f(n) d=1 \,,_pd—1 n.f(d)
d
9] b —1
Sl 2 oa
d=1 f(d) (n_bd 1
oo bd
> Z L / 1 dz (since left-endpoint Riemann sums overestimate)
= fld) \ Jpa-t @
= Inb = Ine =1 = 1
= X 5a > X = 2@ T X
2.7 2.5 2.7 27
which is absurd. Thus, if b > 3 then > -, 1/f(n) = oo
Now assume b = 2. We will define a monotonically increasing sequence of positive integers mi, ms, ms, ... as follows. Fix

any real number L in the open interval (In2, 1). Since

27 -1

there exists an integer m; > 2 with the property that

2T —1
Inf —— ) <L whenever ¢ > m;.
2z-1 _ 1

For all k € N, define

Mi41 = gk
Now, for any k € N,
nN=mpg41 f(n) n:2mk71 f(n)

d=mp \, _,d—1 f(n)

B Mp41—1 2dz—1 1
d=my, nod—1 nf(d)

B Mpep1—1 1 2d_4 1
d=my, f(d) n:2d—1 n
mey1—1 1 2d_1 1

< d;k f(d) /zd*1,1 e dx (since right-endpoint Riemann sums underestimate)
mp+1—1 d myyq—1 " -

L 2" -1 2" 1 1

= <2d‘1 - 1) 2T o 1 2 70



(by the choice of mq). This proves that for any i € N,

miy2—1 1 mig1—1 m;—1 1 mo—1
2 g <P X w2 g S
o f () Wi OR i f
Consequently,
miyo2—1 [ mjp2—1

1 1 : & S N
Zm: Zm <§( Zf )— FZOL <an> 1—sz

n=m:u 7=0 N=m; i1 n=mi n=mi n=mu

Since lim m;y2 — 1 = oo, this shows that the partial sums of the infinite series
11— 00
i 1
n=msjy f

1 1 = 1
—— ——.  Therefore , and hence also ——, converges.
12 T > f o) 2 70w

n=mi

B1. Shanille O’Keal shoots free throws on a basketball court. She hits the first and misses the second, and thereafter the
probability that she hits the next shot is equal to the proportion of shots she has hit so far. What is the probability she hits
exactly 50 of her first 100 shots?

Solution. The probability is 1/99. To see this, let Ej , denote the event that she hits exactly k of her first n free throws,
defined for integers n > 2 and 1 < k < n — 1. We will prove that for all such k£ and n,

1
Prob(Ey ) = — (2)

(which of course solves the problem). Equation (2) trivially holds when n = 2. Pick an integer m > 2, and assume
Equation (2) holds for n = m. Then

m—k k—1

Prob(Egm+1) = Prob(Exm)- —— +Prob(Ep_1,m)  —— (by Bayes’s Theorem)
m m
1 —k 1 k—1
= [ + . (by inductive hypothesis)
m—1 m m—1 m
1
=

which shows that Equation (2) holds for n = m + 1. This completes the induction, and the proof.

B2. Consider a polyhedron with at least five faces such that exactly three edges emerge from each of its vertices. Two players
play the following game:

Each player, in turn, signs his or her name on a previously unsigned face. The winner is the player who first
succeeds in signing three faces that share a common vertex.

Show that the player who signs first will always win by playing as well as possible.

Solution. Note that not all faces of this (convex) polyhedron can be triangles, since in that case the number of vertices, v,
would equal the number of faces, f, and the number of edges would be e = 3f/2, but then Euler’s formula v —e + f = 2
would yield f = 4, contrary to hypothesis.

Thus, Player 1 can choose a face F' with more than 3 edges and sign on that face as the first move. Let FY,..., F,, be the
faces of the polyhedron different from F' that share an edge with F'. By the choice of F'; we know n > 4. Reindex so that F,
F;, and Fj share a vertex whenever j = ¢+ 1 (where we write these indices, here and in the next paragraph, modulo n).

If Player 2 now signs on Fj, or on any face not adjacent to F, then Player 1 signs on Fj;s. Player 1 will then win on the
next move on either Fj;; or Fiys.



1 1 ( 1)” 1
— <=l —-— < —.
2ne e n ne

Solution. We begin by establishing the following inequality:

B3. Show that, for all integers n > 1,

1 1
> 1n(:1:f1) + 22— 1) for every real number « > 1. (3)

To prove this, note that for ¢ > 0, the graph of f(¢) = 1/t is concave up, so the triangle with vertices (z — 1,1/[z — 1]),
(x,1/[x —1]), and (x,1/x) lies entirely above the graph of f, except at the triangle’s two vertices that lie on the graph. The
rectangle with vertices (z — 1,1/[x — 1]), (z,1/[z —1]), (x — 1,0), and (z,0) contains the triangle as well as the area under
the graph of f for z — 1 < ¢t < z. The left-hand side of Equation (3) is the area of the rectangle, and the right-hand side is
the sum of the area of the triangle and the area under the graph of f.
2z

20— 1

2z 1" 1 T 1 2z 1\" 1 T 1
(z) = 1— = 1 - 1-= ~1 - 0
g(@) 2:10—1< :v> [1—90 n<x—1> 2$2—$]>2$—1( x) |:1—$ n(x—l) 2x2—2x]> ’

by Equation (3). Thus, g is monotonically increasing on the interval (1, co). By standard calculus techniques, lim, o g(z) =
1/e. Consequently, g(x) < 1/e for every real number x > 1.

1 xr
Now we will solve the problem. Define the function g(z) = (1 — —) for z > 1. For every = > 1,
T

1 r—1
Define the function h(z) = <1 - —) for z > 1. For every = > 1,
x

since

1:/ ldt</ lﬁ_m<x >
x 1T o1 1 z—1

Thus, h is monotonically decreasing on the interval (1, c0). Again by standard calculus techniques, lim, .o h(z) = 1/e.
Thus, h(z) > 1/e for every real number z > 1.
For every real number x > 1, since g(z) < 1/e we have

2x 1\ 1 1\* 1 1 1 1\* 1
1—-—-) <= == 1——) <—-(1—— — -——({1=-=] >—.
20 — 1 T e x e 2x e x 2ex

For every real number x > 1, since h(z) > 1/e we have

NNt 1 1\* 1 1
(1——) > — == (1——) >—(1——> =
i (& X (&4 X

1 1 \" 1
This shows that for every real number n > 1 we have — < — — (1 — —> < —.

Q|
|
7 N\
=
|
8|
~__

8
AN
o
S|~

2ne e

B4. An integer n, unknown to you, has been randomly chosen in the interval [1, 2002] with uniform probability. Your
objective is to select n in an odd number of guesses. After each incorrect guess, you are informed whether n is higher or
lower, and you must guess an integer on your next turn among the numbers that are still feasibly correct. Show that you
have a strategy so that the chance of winning is greater than 2/3.

Solution. First, we show that if the number of possible integers is a multiple of 3, we have a way of guessing n in an odd
number of guesses with probability 2/3, and we also have a way of guessing n in an even number of guesses with probability
2/3. Suppose the number of possible integers is 3k for some k € N, and induct on k.

Let k = 1; so assume without loss of generality that we are guessing n € {1,2,3}. If we want n in an odd number of
guesses, first guess n = 3. We have a 1/3 chance of finding n on the first guess, and a 1/3 chance of finding n on the third



guess. On the other hand, if we want n in an even number of guesses, first guess n = 2. We have a 2/3 chance of finding
n on the second guess. This proves that with 2/3 probability we can find n in a number of guesses of whichever parity we
desire.

Now (inductively) assume the result for 3%, and suppose (without loss of generality) we are guessing n € {1,2,...,3k+3}.
If we want n in an odd number of guesses, first guess n = 3k + 1. We have a 1/(3k 4+ 3) chance of finding n on the first guess,
we have a 2/(3k + 3) chance of being told “higher,” whereupon we have a 1/2 chance of finding n on the third guess, and we
have a 3k/(3k + 3) chance of being told “lower,” in which case, by inductive hypothesis, we have a 2/3 chance of finding n
in an odd number of guesses. Thus, the probability of finding n in an odd number of guesses will be

1 N 2 1+ 3k 2 2
3k+3 3k+3 2 3k+3 3 3

On the other hand, if we want n in an even number of guesses, first guess n = 3k + 2. We have a 1/(3k + 3) chance of being
told “higher,” whereupon we will find n on the second guess, and we have a (3k + 1)/(3k + 3) chance of being told “lower.”
If told “lower,” we will guess n = 3k + 1; we will then have a 1/(3k + 1) chance of finding n on the second guess, and we will
have a 3k/(3k + 1) chance of being told “lower,” in which case, by inductive hypothesis, we will have a 2/3 chance of finding
n in an even number of guesses. Thus, the probability of finding n in an even number of guesses will be

1 3k+1( 1 3k 2)_2

Sk+3 3k+3 \3k+1 3k+13) 3
This proves that, whenever the number of possibilities for n is a multiple of 3, then with 2/3 probability we can find n in a
number of guesses of whichever parity we desire.

Now, given n € {1,2,...,2002}, we begin by guessing n = 2002. We have a 1/2002 chance of finding n on the first guess.
We have a 2001/2002 chance of being told “lower,” and then we use our “multiple of 3 in an even number of guesses” strategy
to win with probability 2/3. With this strategy, our probability of finding n in an odd number of guesses is

1 2001 2 20025 2 _ 2

2002 12002 3 2002 3° 3

B5. A palindrome in base b is a positive integer whose base-b digits read the same backwards and forwards; for example,
2002 s a 4-digit palindrome in base 10. Note that 200 is not a palindrome in base 10, but it is the 3-digit palindrome 242 in
base 9, and 404 in base 7. Prove that there is an integer which is a 3-digit palindrome in base b for at least 2002 different
values of b.

Solution. We will show, more generally, that for any positive integers k and d, there exists an integer that is a d-digit
palindrome in base b for at least k different values of b. Pick m € N sufficiently large that

m! >277 kT k. and  m >k (4)

Define
m'

bj=——-1€N
2

fori=1,2,...,k. Define
n = (m!)?1.

Then n is a d-digit palindrome in base b; for each ¢ € {1,2,...,k}, for the following reason. We have

d—1

d—1
U RS Dl G LS
=0

and, using Equation (4), we find that

— | !

1< d—1 id71§2d71id71§ (2k)dfl<ﬁ_1< ﬁ_lzbi'
14 k i
d—1\ 41 . - . . d—1Y\ .44 d—1 '\ .41 .

Thus, 0 ) is the (d — ¢)-th digit of n in base b;. Since o )T =g )i e conclude that n is a

palindrome in base b;.



is congruent modulo p to a product of polynomials of the form ax + by + cz, where a,b, ¢ are integers. (We say two integer
polynomials are congruent modulo p if corresponding coefficients are congruent modulo p.)

Solution. More generally, we will show that if x;,x2,...,2, are commuting indeterminates over the field F, of integers
modulo p, then in the polynomial ring F,[x1, 2, ..., 2] the determinant
i 1 o e Tn T
I B
2 2 2
p p
A =det| "1 T2 g
n—1 n—1 n—1
_sz xg “oe xﬁ ]
is a product of Fp-linear combinations of z1, s, ..., z,; namely, A equals

n—1 n—2 n—3
11 Tn+ Y @iz |- 11 Tno1t+ Y aiwi |- 11 Tnoo+ Y aiwi | [ [ (@2 +arm)-an.

(@1,eeean_1)EFp " i=1 (@1yeey@n_2)EFp 2 i=1 (a1,eeyan_3)EFp 3 i=1 a1€F,

To see that A is equal to this expression, we first verify that each factor xy + Z 1 a;x; is indeed a divisor of A. Performing
elementary column operations, we obtain

- — k—1 -
1 e Tk e T xr1 “oe Tk +ZZ:1 a;T; e T
P ... D e p P p k-1 p
Ty Ty, x, xy xk+zi:1 aixi P
2 2 2 2
p . p . P D 2
A = det| %1 T, Tn = det| 7 2+ eal
n—1 n—1 n—1 n—1 n—1 nfl —
D nt
_:El xk Ty, ] K Ii +Z 1 a;x x?’; ]
— k—1 -
x1 - T+ Y % R
D k=1 p_p P
Il e Ik} + Z —1 a x e xn
2
D k=1 p? 2
— de| ol WX
pnfl pn Jo— 1 p -1 pnfl pn,1
—:Z:l cee I‘k + Z xi PN xn i
— k—1 -
oo oY e e a
p p
:El PN (xk+z —1 azxz) PN x%
2
2 P
P k=1 p?
= det| *1 T (xk +2 i1 ale) o Ty
n—1 ptt _
p k=1 prt
L (e S )




(using the rule for the pth power of a sum modulo p, and the fact that a? = a; for all a; € F)). Expanding this last determinant
along the kth column shows that A is divisible by zj + Zf:_ll a;z; in the unique factorization domain Fp[z1, x2, ..., z,]. Since
that is the case for all of the linear polynomials x; + Ei:ll a;x;, which are clearly pairwise coprime, A is divisible by

n—1 n—2 n—3
H (In + Z aﬂh‘) : H (xnl + Z aﬂi) : H (Inz + Z ai%‘) s H(ﬂfz +a121)-21.
1 i=1 2 i=1 3 i=1

(a1,..;an—1)€F, ™ (a1,...,an—2)€Fy ™ (a1,...,an—3)€F, ™ a1€Fp

But A must in fact be a constant multiple of this expression, since the expression and A both have the same total degree in
the x;’s, namely, p"~! +p" "2 4 p" 3 + ... 4 p+ 1. The constant by which the expression must be multiplied to yield A is
2

the coefficient of ziabaf --- 22"~ in A; this coefficient, corresponding to the product down the main diagonal, is 1. This

proves that

:El :L'2 .« .. xn
p p D
51 Ty T
2 2 2
p p . D
det| %1 Lo Ly =
n—1 n—1 no1
p P
Bt T4 T |

n—1 n—2 n—3
II <:vn +> am) : II <wn_1 +y am) : 11 <:vn_2 +y am) o [ [ @+ arwn)-an
h i1 2 i=1 s =1

(a1,..;an—1)EFY ™ (a1, an—2)EFY ™ (a1,...,an—3)€F, ™ a1€Fp



